

3D Mapping Aided GNSS-Base Cooperative Positioning Using Factor Graph Optimization

Guohao Zhang

Positioning and Navigation Laboratory Interdisciplinary Division of Aeronautical and Aviation Engineering The Hong Kong Polytechnic University

GNSS Data for Location-Based Service (LBS)

The big data can be used to improve the

effectiveness of various LBS applications.

Not accurate in dense urban

Solution:

3D Mapping Aided (3DMA) GNSS-Based

Cooperative Positioning

GNSS-Based Cooperative Positioning

Absolute position

Weighted least squares

3DMA GNSS (Wang, Groves et al. 2015, Hsu, Gu et al. 2016)

GNSS-Based Cooperative Positioning

Relative position:

Double difference (DD) (Liu, Lim et al. 2014)

3DMA cooperative positioning (Zhang, Wen et al. 2018)

GNSS-Based Relative Positioning

Pseudorange:

3DMA Cooperative Positioning (ION GNSS+ 2018)

User status evaluation (healthy/NLOS degraded)

Zhang, G., et al. (2018). <u>Collaborative GNSS Positioning with the Aids of 3D City Models</u>. Proceedings of the 31st International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2018), Miami, Florida.

 Opening Minds ● Shaping the Future ● 啟迪思維 ● 成就未來

3DMA Cooperative Positioning (ION GNSS+ 2018)

User status evaluation (healthy/degraded) for NLOS-mitigation

Zhang, G., et al. (2018). <u>Collaborative GNSS Positioning with the Aids of 3D City Models</u>. Proceedings of the 31st International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2018), Miami, Florida.

✓ Opening Minds • Shaping the Future • 啟迪思維 • 成就未來

NLOS mitigation by integrating shadow matching & double difference

Zhang, G., et al. (2018). <u>Collaborative GNSS Positioning with the Aids of 3D City Models</u>. Proceedings of the 31st International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2018), Miami, Florida.

THE HONG KONG

香港理工大學

YTECHNIC UNIVERSITY

linary Division of Aviation Engineering

3DMA Cooperative Positioning Performance

Relative positioning error between Receiver 1 and Receiver 4

Method	LS	DD	SDM-DD
RMSE (m)	33.3	84.6	20.3
Availability	100%	100%	70%

LS: Least square positioning DD: Double difference positioning SDM-DD: Shadow matching NLOS-excluded DD

3DMA NLOS-excluded cooperative positioning RMSE (m)

Receiver	1	2	3	4
LS	3.7	5.0	14.7	30.9
SDM-CP	4.2	4.7	14.2	16.2

Limited measurements after NLOS exclusion!

LS: Least square positioning

SDM-CP: Shadow matching NLOS-excluded cooperative positioning

Challenges of GNSS Cooperative Positioning

Limited common LOS satellite for cooperative positioning in urban

Proposed solution

Use ray-tracing algorithm to

correct NLOS instead of exclusion

 Single anchor-based method is not robust for urban

Use factor graph optimization to consider all available constraints

Challenges of GNSS Positioning in Urban

Environment information

Factor graph optimization

Each user's position

Flowchart of the proposed algorithm

Ray-tracing algorithm (Hsu, Gu et al. 2016)

- 1. Sample candidates (digital terrain model)
- 2. Simulate GNSS measurements with NLOS geometrical relationship:

$$L_n^i = \begin{cases} \|\mathbf{X}_n - \mathbf{X}^i\|, & i \in LOS \\ \|\mathbf{X}_{RP} - \mathbf{X}^i\| + \|\mathbf{X}_n - \mathbf{X}_{RP}\|, & i \in NLOS \end{cases}$$

3. GNSS measurement correction sets:

```
\delta \rho_n^i = L_n^i - R_n^i
```


ation Engineering

F HONG KONG

University

Ray-tracing algorithm (Hsu, Gu et al. 2016)

4. Simulation-measurement similarity estimation:

(single differenced to cancel receiver clock offset)

Simulation: $\hat{S}_{n}^{i} = L_{n}^{i} - L_{n}^{m}$ Measurement: $\tilde{S}^{i} = \rho^{i} - \rho^{m}$ Average difference: $\delta S_{n} = \frac{\sum_{i} |\hat{S}_{n}^{i} - \tilde{S}^{i}|}{i}$ $\Lambda_{n} = e^{-(\delta S_{n} - \delta S_{min})/(\delta S_{max} - \delta S_{min})}$

5. Weighted averaging candidate positions:

$$\hat{\mathbf{x}}_{RT} = \frac{\sum_{n} \Lambda_{n} \cdot \mathbf{x}_{n}}{\sum_{n} \Lambda_{n}}$$

Flowchart of the proposed algorithm

- **1.** Sample candidates for different user
- 2. Pair each candidates from different user
- **3.** Apply ray-tracing NLOS-corrected double difference relative positioning for each pair:

$$\boldsymbol{\rho}_{n_a}^* = \widetilde{\boldsymbol{\rho}}_{n_a} - \delta \boldsymbol{\rho}_{n_a}$$
$$\Delta \widehat{\mathbf{x}}_{n_a, n_b} = \left(\mathbf{G}^{\mathrm{T}} \mathbf{G}\right)^{-1} \mathbf{G}^{\mathrm{T}} \mathbf{D}_{n_a, n_b}^*$$

Engineering

3DMA Double Difference with Ray-tracing

4. Pair-wise simulation-measurement similarity estimation:

$$\delta \Delta \mathbf{x}_{n_a, n_b} = \left\| \left(\mathbf{x}_{n_b} - \mathbf{x}_{n_a} \right) - \Delta \hat{\mathbf{x}}_{n_a, n_b} \right\|$$
$$\Lambda_{n_a, n_b} = e^{-\left(\delta \Delta \mathbf{x}_{n_a, n_b} - \delta \Delta \mathbf{x}_{min}\right) / \left(\delta \Delta \mathbf{x}_{max} - \delta \Delta \mathbf{x}_{min}\right)}$$

5. Pair-wise similarity-weighted averaging relative position:

$$\Delta \hat{\mathbf{x}}_{ab} = \frac{\sum_{n_a} \sum_{n_b} \Lambda_{n_a, n_b} \Delta \mathbf{x}_{n_a, n_b}}{\sum_{n_a} \sum_{n_b} \Lambda_{n_a, n_b}}$$

Flowchart of the proposed algorithm

Factor Graph Optimization

Interdisciplinary Division of Aeronautical and Aviation Engineering 航空工程跨領域學部

Experiment Setup

Experiment		Static	Dynamic	
Receiver type		Ublox EVK-M8T		
Constellation		GPS/GLONASS	GPS/BDS	
Environment	Receiver 1	Open sky	Open sky	
	Receiver 2	Open sky near bridge	Open sky	
	Receiver 3	Building corner under bridge	Between buildings	
	Receiver 4	Between buildings	One side building	
	Receiver 5		Urban canyon	

Experiment Result – Static Experiment

Relative positioning performance between Receiver 1 (healthy) and Receiver 4 (degraded)

interdisciplinary Division of

Method	Measurement amount	HDOP	RMSE (m)	Availability
DD	10.4	0.72	84.6	100%
SDM-DD	2.9	2.41	20.3	70%
RT-DD	4.7	1.34	16.3	100%

DD: Double difference positioning **SDM-DD:** Shadow matching NLOS-excluded DD RT-DD: Ray-tracing NLOS-corrected DD

Experiment Result – Static Experiment

Absolute positioning performance Receiver 4 (degraded)

LS: Least squares positioning RT: Ray-tracing SDM-FGO: SDM-CP with factor graph **SDM-CP:** Shadow matching NLOS-excluded cooperative positioning (Zhang, Wen et al. 2018 on ION GNSS+ 2018)

RT-CP: Ray-tracing NLOS-corrected cooperative positioning

RT-FGO: RT-CP with factor graph

✓ Opening Minds • Shaping the Future • 啟迪思維 • 成就未來

Experiment Result – Static Experiment

Absolute positioning performance

Experiment Result – Dynamic Experiment

Absolute positioning performance

4

25.3

10.6

12.0

7.6

3.4

4.2

5

46.5

20.1

18.3

19.3

25.5

18.6

Experiment Result – Dynamic Experiment

Absolute positioning performance

RT-FGO: RT-CP with factor graph

Absolute Positioning RMSE (m)

3

14.6

8.5

14.7

5.3

7.5

8.1

2

PEM: Positioning	error map	prediction
LS: Least squares	positioning	g

RT: Ray-tracing

SDM-FGO: SDM-CP with factor graph

SDM-CP: Shadow matching NLOS-excluded cooperative positioning (Zhang, Wen et al. 2018 on ION GNSS+ 2018)

RT-CP: Ray-tracing NLOS-corrected cooperative positioning

26

Opening Minds • Shaping the Future • 啟迪思維 • 成就未來

Conclusion

- The proposed ray-tracing NLOS-corrected DD method improves the relative positioning performance in dense urban.
 (factor of 4 comparing to conventional DD with 100% availability)
- The factor graph optimization can improve the robustness by considering all the available constraints. (through space and time)
- The proposed 3DMA cooperative positioning algorithm with factor graph optimization can improve the positioning performance in dense urban.

```
(25.3m \rightarrow 4.2m for degraded Receiver 4).
```


Future Works

- The scalability of the proposed algorithm.
- Mitigate other types of error.

(Multipath, double reflected NLOS reception, etc)

• The computation load for pair-wise candidate matching is large and needs to be reduced.

Q & A

Guohao Zhang guo-hao.zhang@connect.polyu.hk